Live imaging of Runx1 expression in the dorsal aorta tracks the emergence of blood progenitors from endothelial cells.
نویسندگان
چکیده
Blood cells of an adult vertebrate are continuously generated by hematopoietic stem cells (HSCs) that originate during embryonic life within the aorta-gonad-mesonephros region. There is now compelling in vivo evidence that HSCs are generated from aortic endothelial cells and that this process is critically regulated by the transcription factor Runx1. By time-lapse microscopy of Runx1-enhanced green fluorescent protein transgenic zebrafish embryos, we were able to capture a subset of cells within the ventral endothelium of the dorsal aorta, as they acquire hemogenic properties and directly emerge as presumptive HSCs. These nascent hematopoietic cells assume a rounded morphology, transiently occupy the subaortic space, and eventually enter the circulation via the caudal vein. Cell tracing showed that these cells subsequently populated the sites of definitive hematopoiesis (thymus and kidney), consistent with an HSC identity. HSC numbers depended on activity of the transcription factor Runx1, on blood flow, and on proper development of the dorsal aorta (features in common with mammals). This study captures the earliest events of the transition of endothelial cells to a hemogenic endothelium and demonstrates that embryonic hematopoietic progenitors directly differentiate from endothelial cells within a living organism.
منابع مشابه
The effect of microRNA-125 on the adhesion molecule expression of integrin beta2 and adhesive determination of endothelial cells isolated from human aorta to monocyte
Background: The immune-mediated responses in vascular cells may include the increased expression of endothelial adhesion molecules, leukocyte rolling and infiltration, cellular lipid dysregulation and vascular smooth muscle cells (VSMCs) differentiation. Investigating the cellular and molecular events involved in the rolling process is useful for treatment or prevention of the vessel stenosis es...
متن کاملA long way to stemness
Hematopoiesis starts with generation of “primitive” erythroblasts and macrophage progenitors in the visceral yolk sac. The earliest strictly defined adulttype or definitive HSCs can be detected in the AGM region at around E11. Accumulation of stem cells activity in the explant cultures of the AGM region strengthened a growing perception that HSCs originate intraembryonically and mammalian hemat...
متن کاملCBFb and RUNX1 are required at 2 different steps during the development of hematopoietic stem cells in zebrafish
Hematopoietic development is evolutionarily conserved among vertebrates. Similar to mammals, zebrafish embryos undertake sequential waves of hematopoiesis at distinct locations during embryonic development. The first wave is primitive hematopoiesis, in which erythroid progenitors arise from the posterior lateral mesoderm and form at later stages the intermediate cell mass, where erythroblasts a...
متن کاملNkx2.5 marks angioblasts that contribute to hemogenic endothelium of the endocardium and dorsal aorta
Novel regenerative therapies may stem from deeper understanding of the mechanisms governing cardiovascular lineage diversification. Using enhancer mapping and live imaging in avian embryos, and genetic lineage tracing in mice, we investigated the spatio-temporal dynamics of cardiovascular progenitor populations. We show that expression of the cardiac transcription factor Nkx2.5 marks a mesoderm...
متن کاملExplorer Runx 1 is required for the endothelial to haematopoietic cell transition but not thereafter
HSCs are the founder cells of the adult hematopoietic system, and thus knowledge of the molecular program directing their generation during development is important for regenerative hematopoietic strategies. Runx1 is a pivotal transcription factor required for HSC generation in the vascular regions of the mouse conceptus the aorta, vitelline and umbilical arteries, yolk sac and placenta 1, 2. I...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Blood
دوره 116 6 شماره
صفحات -
تاریخ انتشار 2010